Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Crit Care Explor ; 5(1): e0827, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2252114

ABSTRACT

Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log2 increase, 1.53; 95% CI, 1.17-2.00; p = 0.002). Higher ANGPTL4 concentrations were also associated with higher proportions of venous thromboembolism and acute respiratory distress syndrome. Longitudinal ANGPTL4 concentrations were significantly different during the first 2 weeks of hospitalization in patients who subsequently died compared with survivors (p for interaction = 8.1 × 10-5). Proteomics analysis demonstrated abundance of ANGPTL4 in lung tissue compared with other organs in COVID-19. ANGPTL4 single-nuclear RNA gene expression was significantly increased in pulmonary alveolar type 2 epithelial cells and fibroblasts in COVID-19 lung tissue compared with controls. CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients.

2.
Crit Care Explor ; 4(12): e0813, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2190843

ABSTRACT

To identify and characterize clinical decline after completion of dexamethasone in severe COVID-19 and determine whether interleukin (IL)-6 and other inflammatory biomarkers predict the occurrence of clinical decline. DESIGN: Prospective observational cohort. SETTING: ICUs in three University of Washington affiliated hospitals between July 2020 and April 2021. PATIENTS: Patients admitted to an ICU with COVID-19 who completed a course of dexamethasone. MEASUREMENTS AND MAIN RESULTS: We identified 65 adult patients with severe COVID-19 who completed a 10-day course of dexamethasone, of whom 60 had plasma samples collected within 3 days of dexamethasone completion. We measured IL-6 with a clinical-grade electrochemiluminescent assay and a larger panel of inflammatory biomarkers (IL-8, Monocyte Chemoattractant Protein-1, Monocyte Inflammatory Protein-1 alpha, interferon gamma, C-X-C Motif Chemokine Ligand 10, WBC, bicarbonate) with a research immunoassay. We defined clinical decline by the occurrence of incident severe kidney injury, incident or escalating shock or fever, worsening hypoxemia, or death within 5 days of completion of dexamethasone. We estimated risk for clinical decline by standardized log2 transformed biomarker concentration using multivariable logistic regression. Clinical decline post-dexamethasone was common, occurring in 49% of patients (n = 32). Among all biomarkers, IL-6 levels were most strongly associated with clinical decline. After adjustment for age, sex, and study site, the odds of post-dexamethasone clinical decline were 7.33 times higher per one sd increase in log2 transformed IL-6 concentrations (adjusted odds ratio, 7.33; CI, 2.62-20.47; p < 0.001). The discriminatory power of IL-6 for clinical decline was high (cross-validated mean area under the receiver operating characteristic curve, 0.90; 95% CI, 0.79-0.95). CONCLUSIONS: Clinical decline after completion of dexamethasone for severe COVID-19 is common. IL-6 concentrations obtained prior to completion of dexamethasone may have utility in identifying those at highest risk for subsequent worsening. If validated, future work might test whether plasma IL-6 could be used as a tool for a personalized approach to duration of dexamethasone treatment in severe COVID-19.

3.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L14-L26, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1861686

ABSTRACT

Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.


Subject(s)
COVID-19 , Respiratory Insufficiency , B7-H1 Antigen , Chemokines , Critical Illness , Humans , Prospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha
4.
Curr Probl Diagn Radiol ; 51(6): 884-891, 2022.
Article in English | MEDLINE | ID: covidwho-1799521

ABSTRACT

PURPOSE: To describe evolution and severity of radiographic findings and assess association with disease severity and outcomes in critically ill COVID-19 patients. MATERIALS AND METHODS: This retrospective study included 62 COVID-19 patients admitted to the intensive care unit (ICU). Clinical data was obtained from electronic medical records. A total of 270 chest radiographs were reviewed and qualitatively scored (CXR score) using a severity scale of 0-30. Radiographic findings were correlated with clinical severity and outcome. RESULTS: The CXR score increases from a median initial score of 10 at hospital presentation to the median peak CXR score of 18 within a median time of 4 days after hospitalization, and then slowly decreases to a median last CXR score of 15 in a median time of 12 days after hospitalization. The initial and peak CXR score was independently associated with invasive MV after adjusting for age, gender, body mass index, smoking, and comorbidities (Initial, odds ratio [OR]: 2.11 per 5-point increase, confidence interval [CI] 1.35-3.32, P= 0.001; Peak, OR: 2.50 per 5-point increase, CI 1.48-4.22, P= 0.001). Peak CXR scores were also independently associated with vasopressor usage (OR: 2.28 per 5-point increase, CI 1.30-3.98, P= 0.004). Peak CXR scores strongly correlated with the duration of invasive MV (Rho = 0.62, P< 0.001), while the initial CXR score (Rho = 0.26) and the peak CXR score (Rho = 0.27) correlated weakly with the sequential organ failure assessment score. No statistically significant associations were found between radiographic findings and mortality. CONCLUSIONS: Evolution of radiographic features indicates rapid disease progression and correlate with requirement for invasive MV or vasopressors but not mortality, which suggests potential nonpulmonary pathways to death in COVID-19.


Subject(s)
COVID-19 , Critical Illness , Humans , Intensive Care Units , Retrospective Studies , Severity of Illness Index
5.
Crit Care Explor ; 3(12): e0591, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1574928

ABSTRACT

IMPORTANCE: In bacterial sepsis, CD14 and its N-terminal fragment (soluble CD14 subtype, "Presepsin") have been characterized as markers of innate immune responses and emerging evidence has linked both to coronavirus disease 2019 pathophysiology. OBJECTIVES: Our aim was to determine the relationship between the soluble form of CD14 and soluble CD14 subtype plasma levels, coronavirus disease 2019 status, and coronavirus disease 2019-related outcomes. DESIGN: A prospective cohort study. SETTING: ICUs in three tertiary hospitals in Seattle, WA. PARTICIPANTS: Two-hundred four critically ill patients under investigation for coronavirus disease 2019. MAIN OUTCOMES AND MEASURES: We measured plasma soluble CD14 and soluble CD14 subtype levels in samples collected upon admission. We tested for associations between biomarker levels and coronavirus disease 2019 status. We stratified by coronavirus disease 2019 status and tested for associations between biomarker levels and outcomes. RESULTS: Among 204 patients, 102 patients had coronavirus disease 2019 and 102 patients did not. In both groups, the most common ICU admission diagnosis was respiratory failure or pneumonia and proportions receiving respiratory support at admission were similar. In regression analyses adjusting for age, sex, race/ethnicity, steroid therapy, comorbidities, and severity of illness, soluble CD14 subtype was 54% lower in coronavirus disease 2019 than noncoronavirus disease 2019 patients (fold difference, 0.46; 95% CI, 0.28-0.77; p = 0.003). In contrast to soluble CD14 subtype, soluble CD14 levels did not differ between coronavirus disease 2019 and noncoronavirus disease 2019 patients. In both coronavirus disease 2019 and noncoronavirus disease 2019, in analyses adjusting for age, sex, race/ethnicity, steroid therapy, and comorbidities, higher soluble CD14 subtype levels were associated with death (coronavirus disease 2019: adjusted relative risk, 1.21; 95% CI, 1.06-1.39; p = 0.006 and noncoronavirus disease 2019: adjusted relative risk, 1.19; 95% CI, 1.03-1.38; p = 0.017), shock, and fewer ventilator-free days. In coronavirus disease 2019 only, an increase in soluble CD14 subtype was associated with severe acute kidney injury (adjusted relative risk, 1.23; 95% CI, 1.05-1.44; p = 0.013). CONCLUSIONS: Higher plasma soluble CD14 subtype is associated with worse clinical outcomes in critically ill patients irrespective of coronavirus disease 2019 status though soluble CD14 subtype levels were lower in coronavirus disease 2019 patients than noncoronavirus disease 2019 patients. Soluble CD14 subtype levels may have prognostic utility in coronavirus disease 2019.

6.
Ann Am Thorac Soc ; 18(4): 632-640, 2021 04.
Article in English | MEDLINE | ID: covidwho-1211722

ABSTRACT

Rationale: No direct comparisons of clinical features, laboratory values, and outcomes between critically ill patients with coronavirus disease (COVID-19) and patients with influenza in the United States have been reported.Objectives: To evaluate the risk of mortality comparing critically ill patients with COVID-19 with patients with seasonal influenza.Methods: We retrospectively identified patients admitted to the intensive care units (ICUs) at two academic medical centers with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or influenza A or B infections between January 1, 2019, and April 15, 2020. The clinical data were obtained by medical record review. All patients except one had follow-up to hospital discharge or death. We used relative risk regression adjusting for age, sex, number of comorbidities, and maximum sequential organ failure scores on Day 1 in the ICU to determine the risk of hospital mortality and organ dysfunction in patients with COVID-19 compared with patients with influenza.Results: We identified 65 critically ill patients with COVID-19 and 74 patients with influenza. The mean (±standard deviation) age in each group was 60.4 ± 15.7 and 56.8 ± 17.6 years, respectively. Patients with COVID-19 were more likely to be male, have a higher body mass index, and have higher rates of chronic kidney disease and diabetes. Of the patients with COVID-19, 37% identified as Hispanic, whereas 10% of the patients with influenza identified as Hispanic. A similar proportion of patients had fevers (∼40%) and lymphopenia (∼80%) on hospital presentation. The rates of acute kidney injury and shock requiring vasopressors were similar between the groups. Although the need for invasive mechanical ventilation was also similar in both groups, patients with COVID-19 had slower improvements in oxygenation, longer durations of mechanical ventilation, and lower rates of extubation than patients with influenza. The hospital mortality was 40% in patients with COVID-19 and 19% in patients with influenza (adjusted relative risk, 2.13; 95% confidence interval, 1.24-3.63; P = 0.006).Conclusions: The need for invasive mechanical ventilation was common in patients in the ICU for COVID-19 and influenza. Compared with those with influenza, patients in the ICU with COVID-19 had worse respiratory outcomes, including longer duration of mechanical ventilation. In addition, patients with COVID-19 were at greater risk for in-hospital mortality, independent of age, sex, comorbidities, and ICU severity of illness.


Subject(s)
COVID-19/mortality , COVID-19/therapy , Influenza, Human/mortality , Influenza, Human/therapy , Adult , Aged , COVID-19/diagnosis , Critical Care , Critical Illness , Female , Hospital Mortality , Hospitalization , Humans , Influenza, Human/diagnosis , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , United States
7.
Crit Care ; 25(1): 148, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1191483

ABSTRACT

BACKGROUND: Analyses of blood biomarkers involved in the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection can reveal distinct biological pathways and inform development and testing of therapeutics for COVID-19. Our objective was to evaluate host endothelial, epithelial and inflammatory biomarkers in COVID-19. METHODS: We prospectively enrolled 171 ICU patients, including 78 (46%) patients positive and 93 (54%) negative for SARS-CoV-2 infection from April to September, 2020. We compared 22 plasma biomarkers in blood collected within 24 h and 3 days after ICU admission. RESULTS: In critically ill COVID-19 and non-COVID-19 patients, the most common ICU admission diagnoses were respiratory failure or pneumonia, followed by sepsis and other diagnoses. Similar proportions of patients in both groups received invasive mechanical ventilation at the time of study enrollment. COVID-19 and non-COVID-19 patients had similar rates of acute respiratory distress syndrome, severe acute kidney injury, and in-hospital mortality. While concentrations of interleukin 6 and 8 were not different between groups, markers of epithelial cell injury (soluble receptor for advanced glycation end products, sRAGE) and acute phase proteins (serum amyloid A, SAA) were significantly higher in COVID-19 compared to non-COVID-19, adjusting for demographics and APACHE III scores. In contrast, angiopoietin 2:1 (Ang-2:1 ratio) and soluble tumor necrosis factor receptor 1 (sTNFR-1), markers of endothelial dysfunction and inflammation, were significantly lower in COVID-19 (p < 0.002). Ang-2:1 ratio and SAA were associated with mortality only in non-COVID-19 patients. CONCLUSIONS: These studies demonstrate that, unlike other well-studied causes of critical illness, endothelial dysfunction may not be characteristic of severe COVID-19 early after ICU admission. Pathways resulting in elaboration of acute phase proteins and inducing epithelial cell injury may be promising targets for therapeutics in COVID-19.


Subject(s)
COVID-19/blood , Endothelial Cells/virology , Epithelial Cells/virology , Host Microbial Interactions , Inflammation/virology , Adult , Aged , Biomarkers/blood , COVID-19/epidemiology , COVID-19/therapy , Case-Control Studies , Female , Humans , Inflammation/blood , Intensive Care Units , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL